Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; : e0277522, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2266459

ABSTRACT

Nasopharyngeal swabs (NPS) or washings have traditionally been used to diagnose respiratory tract infections. Reverse transcriptase PCR (RT-PCR) is widely used for rapid viral detection using samples from the upper respiratory tract. However, RT-PCR is rarely applied to sputum samples, mainly due to the viscosity of sputum. Thus, we assessed the detection rates of respiratory viruses from NPS, sputum samples, and combined NPS and sputum samples using multiplex RT-PCR (Allplex respiratory panels I, II, and III; Seegene, Seoul, South Korea). Paired NPS and sputum samples were collected from 219 patients admitted to the hospital with acute respiratory illnesses from October to December 2019. RT-PCR was performed on each sample for virus detection. Combined samples for virus detection were produced using remnant NPS and sputum samples with a positive virus signal. Respiratory viral nucleic acid was identified in 92 (42%) of 219 patients. Among the 92 viral detections, 61 (28%) were detected by both NPS and sputum samples. Twenty-four (11%) were sputum positive/NPS negative, and seven (3%) were sputum negative/NPS positive. For the combined NPS-sputum samples (n = 92), all paired samples positive in both specimens (n = 61) were also positive in the combined NPS-sputum sample. Twenty-seven (87%) of the 31 discordant paired samples were positive in the combined samples. Out of the total of 103 viruses identified before combining the samples, the detection rate of the combined samples was 94% (97/103), which was higher than the detection rates of sputum (88%; 91/103) and NPS (71%; 73/103). Because additional tests incur additional costs, our findings suggest that combining samples instead of testing separate samples using RT-PCR is likely the most cost-effective method of viral testing for patients with acute respiratory illnesses. IMPORTANCE This study reveals that RT-PCR utilizing sputum significantly increased the detection rate for respiratory viral nucleic acids among adult patients admitted to the hospital, compared to nasopharyngeal swabs (NPS). Notably, combined samples of sputum and NPS maintained the majority of the improved sputum detection rate with only a few positive signal losses from NPS samples. In order to detect respiratory viruses in adult patients with acute respiratory illness, it is important to choose the optimal respiratory samples. This study helped to improve our understanding of this process.

2.
Small ; : e2200712, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2231914

ABSTRACT

Rapid spread of infectious diseases is a global threat and has an adverse impact on human health, livelihood, and economic stability, as manifested in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Even though people wear a face mask as protective equipment, direct disinfection of the pathogens is barely feasible, which thereby urges the development of biocidal agents. Meanwhile, repetitive respiration generates temperature variation wherein the heat is regrettably wasted. Herein, a biocidal ZnO nanorod-modified paper (ZNR-paper) composite that is 1) integrated on a face mask, 2) harvests waste breathing-driven thermal energy, 3) facilitates the pyrocatalytic production of reactive oxygen species (ROS), and ultimately 4) exhibits antibacterial and antiviral performance is proposed. Furthermore, in situ generated compressive/tensile strain of the composite by being attached to a curved mask is investigated for high pyroelectricity. The anisotropic ZNR distortion in the bent composite is verified with changes in ZnO bond lengths and OZnO bond angles in a ZnO4 tetrahedron, resulting in an increased polarization state and possibly contributing to the following pyroelectricity. The enhanced pyroelectric behavior is demonstrated by efficient ROS production and notable bioprotection. This study exploring the pre-strain effect on the pyroelectricity of ZNR-paper might provide new insights into the piezo-/pyroelectric material-based applications.

3.
Microbiol Spectr ; 10(4): e0249521, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1986343

ABSTRACT

We investigated how differences in age, sex, or vaccine type can affect humoral and cellular immune responses after vaccination with vector (ChAdOx1 nCoV-19), mix-and-match (first, ChAdOx1 nCoV-19, and second, BNT162b2), or mRNA (BNT162b2 or mRNA-1273) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Venous blood was collected from 573 subjects (vector, 396; mix-and-match, 96; and mRNA, 81) before the first vaccination (T0), 7 to 8 weeks (vector) or 3 to 4 weeks (mRNA) after the first vaccination (T1), and 3 to 4 weeks after the second vaccination (T2). The humoral and cellular immune responses were evaluated using Elecsys anti-SARS-CoV-2 (Roche), Alinity SARS-CoV-2 IgG II Quant (Abbott), cPass SARS-CoV-2 neutralization antibody detection (GenScript), and QuantiFERON SARS-CoV-2 (Qiagen) kits. At T1, the levels of the receptor-binding domain antibodies (RBD Ab) and neutralizing antibodies (NAb) decreased with aging, but interferon gamma release (IGR) levels increased. The RBD Ab, NAb, and IGR levels were higher in females than in males at T1 and T2. The NAb levels were higher in the mix-and-match and mRNA vaccine groups than in the vector vaccine group at T2. The RBD Ab and IGR levels were higher in the mRNA vaccine group than in the vector or mix-and-match vaccine groups at T2. The optimal cutoffs for RBD Ab and NAb, which were used to determine the presence of T cell responses, were 5.7 binding antibody units per milliliter (BAU mL-1) and 12.0 IU mL-1, respectively. Age, sex, and vaccine type affected the humoral and cellular immune responses, and T cell responses could be estimated from RBD Ab and NAb levels. IMPORTANCE There have been few studies that comprehensively evaluated factors affecting immune responses and the correlation between humoral and cellular immune responses after vector, mix-and-match, and mRNA vaccines against SARS-CoV-2. Therefore, we analyzed the effects of age, sex, and the different vaccine regimens on the immune responses to vaccination against SARS-CoV-2. The correlation between humoral and cellular immune responses and the cutoffs were derived for RBD antibodies and neutralizing antibodies to predict the presence of the cellular immune responses. In this comprehensive study, we demonstrated that there were differences in the immune responses induced after vaccination depending on the age and sex of an individual. Among the three vaccine regimens, the mix-and-match and mRNA vaccines induced the most robust immune responses. Finally, the proposed optimal cutoffs for RBD and neutralizing antibodies may be useful for predicting cellular immune responses when assays for cellular immune responses are not available.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Female , Humans , Immunity, Cellular , Male , RNA, Messenger , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
4.
J Clin Virol ; 153: 105213, 2022 08.
Article in English | MEDLINE | ID: covidwho-1882170

ABSTRACT

BACKGROUND: Human parainfluenza virus 3 (HPIV3) is a major respiratory pathogen that causes acute respiratory infections in infants and children. Since September 2021, an out-of-season HPIV3 rebound has been noted in Korea. The objective of this study was to analyze the molecular characteristics of the HPIV3 strains responsible for the outbreak in Seoul, South Korea. METHODS: A total of 61 HPIV3-positive nasopharyngeal swab specimens were collected between October and November 2021. Using 33 HPIV3-positive specimens, partial nucleotide sequences of the HPIV3 hemagglutinin-neuraminidase (HN) gene were aligned with previously published HN gene sequences for phylogenetic and genetic distance (p-distance) analyses. RESULTS: Phylogenetic tree revealed that all Seoul HPIV3 strains grouped within the phylogenetic subcluster C3. However, these strains formed a unique cluster that branched separately from the C3a lineage. This cluster showed 99% bootstrap support with a p-distance < 0.001. Genetic distances within the other C3 lineages ranged from 0.013 (C3a) to 0.023 (C3c). Deduced amino acid sequences of the HN gene revealed four protein substitutions in Seoul HPIV3 strains that have rarely been observed in other reference strains: A22T, K31N, G387S, and E514K. CONCLUSIONS: Phylogenetic analysis of Seoul HPIV3 strains revealed that the strain belonged to a separate cluster within subcluster C3. Genetic distances among strains within subcluster C3 suggest the emergence of a new genetic lineage. The emergence of a new genetic lineage could pose a potential risk of a new epidemic. Further monitoring of the circulating HPIV3 strains is needed to understand the importance of newly discovered mutations.


Subject(s)
COVID-19 , Paramyxoviridae Infections , Child , HN Protein/chemistry , HN Protein/genetics , HN Protein/metabolism , Humans , Infant , Pandemics , Parainfluenza Virus 3, Human/genetics , Phylogeny , Seoul
5.
Biochip J ; 15(1): 100-108, 2021.
Article in English | MEDLINE | ID: covidwho-1092859

ABSTRACT

Anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) nucleoprotein (NP) antibodies were isolated from pig sera using human SARS-CoV-2 NP-immobilized magnetic beads. The binding properties of the isolated antibodies against SARS-CoV-2 NP were tested via flow cytometry using SARS-CoV-2 NP-immobilized magnetic beads. A competitive immunoassay was developed for detecting SARS-CoV-2 NP as well as SARS-CoV-2 in the culture fluid using magnetic beads with immobilized anti-SARS-CoV-2 NP antibodies. Selectivity tests were carried out during the competitive immunoassay for SARS-CoV, MERS-CoV, and CoV strain 229E in the culture fluid.

6.
Biochip J ; 14(4): 358-368, 2020.
Article in English | MEDLINE | ID: covidwho-898162

ABSTRACT

Anti-coronavirusdisease-2019 (COVID-19; anti-severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2)) antibodies against nucleoprotein (NP) were purified from pig sera. Following the separation of the antibody fraction using a protein-A column, the final yield of the purified antibodies against SARS-CoV-2 NPs was estimated to be 0.26 ± 0.05 % (absolute amount of 143.4 ± 25.2 ng, n=5) from 1 mL of pig sera. The binding activities of the isolated antibodies were confirmed using immunoassay and immunostaining. Based on the specific binding activity to NPs, a quantitative assay was performed using a surface plasmon resonance (SPR) biosensor. From the doseresponse curve, the binding constant (Kd) was calculated to be 185 pM and the limit of detection was estimated to be 1.02 pM. The SPR biosensor with the isolated antibodies against SARS-CoV-2 NPs was applied for the detection of SARS-CoV-2, MERS-CoV, and CoV strain 229E in culture fluid.

SELECTION OF CITATIONS
SEARCH DETAIL